Chaperonas farmacológicas. Nueva alternativa terapéutica para la nefropatía por enfermedad de Fabry en Argentina
Resumen
La enfermedad de Fabry (EF, OMIM 301500) es una enfermedad por depósito lisosomal (EDL). Este grupo de enfermedades incluye al menos cincuenta entidades hereditarias de baja frecuencia, originadas por un error congénito del metabolismo, secundario a un defecto génico específico, que conduce a una deficiencia en la actividad de una o varias enzimas lisosomales. El déficit de actividad enzimática produce el acúmulo anormal de productos no metabolizados, primariamente en los lisosomas celulares.
La EF es una EDL causada por la actividad deficiente de la enzima α-galactosidasa-A (αGal-A, EC 3.2.1.22), lo que produce la acumulación de glicoesfingolípidos complejos, principalmente globotriaosilceramida (Gb3) (Galα1→4Galβ1→4Glcβ→Cer, Gb3) y sus metabolitos asociados, en los lisosomas, otros compartimientos celulares y el plasma de manera progresiva y multisistémica.
Citas
2) Ortiz A, Germain DP, Desnick RJ, Politei J, Mauer M, Burlina A, et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol Genet Metab. 2018;123(4):416-27.
3) Perretta F, Antongiovanni N, Jaurretche S. Major organic involvement in women with Fabry disease in Argentina. ScientificWorldJournal. 2018; 2018: 6515613.
4) Matern D, Gavrilov D, Oglesbee D, Raymond K, Rinaldo P, Tortorelli S. Newborn screening for lysosomal storage disorders. Semin Perinatol. 2015;39(3):206-16.
5) Linthorst GE, Bouwman MG, Wijburg FA, Aerts JM, Poorthuis BJ, Hollak CE. Screening for Fabry disease in high-risk populations: a systematic review. J Med Genet. 2010;47(4):217-22.
6) Barba Romero MA. Estudio de la enfermedad de Fabry en España y en Europa: afectación y análisis de la respuesta al tratamiento enzimático en las mujeres. Utilidad de un registro de enfermos [tesis doctoral]. Universidad Autónoma de Madrid: Facultad de Medicina, Departamento de Medicina, 2013.
7) Jaurretche S. Mutación de novo en paciente adulto joven con compromiso neurológico, cardiológico y renal. Rev Argent Med. 2016;4(8):16-8.
8) Barbey F, Brakch N, Linhart A, Jeanrenaud X, Palecek T, Bultas J, et al. Increased carotid intima-media thickness in the absence of atherosclerotic plaques in an adult population with Fabry disease. Acta Paediatr Suppl. 2006;95(451):63-8.
9) Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A. 2008;105(8):2812-7.
10) Sanchez-Niño MD, Sanz AB, Carrasco S, Saleem MA, Mathieson PW, Valdivielso JM, et al. Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrol Dial Transplant. 2011;26(6):1797-802.
11) Tøndel C, Bostad L, Hirth A, Svarstad E. Renal biopsy findings in children and adolescents with Fabry disease and minimal albuminuria. Am J Kidney Dis. 2008;51(5):767-76.
12) Najafian B, Svarstad E, Bostad L, Gubler MC, Tøndel C, Whitley C, et al. Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int. 2011;79(6):663-70.
13) Tøndel C, Bostad L, Larsen KK, Hirth A, Vikse BE, Houge G, et al. Agalsidase benefits renal histology in young patients with Fabry disease. J Am Soc Nephrol. 2013;24(1):137-48.
14) Tøndel C, Kanai T, Larsen KK, Ito S, Politei JM, Warnock DG, et al. Foot process effacement is an early marker of nephropathy in young classic Fabry patients without albuminuria. Nephron. 2015;129(1):16-21.
15) Perretta F, Antongiovanni N, Jaurretche S. Early renal involvement in a girl with classic Fabry disease. Case Rep Nephrol. 2017;2017:9543079.
16) Jaurretche S, Venera G, Antongiovanni N, Pérez GR. Urinary excretion of microRNAs in young fabry disease patients with mild or absent nephropathy. Open J Nephrol. 2018;8:71-83.
17) Jaurretche S, Venera G, Antongiovanni N, Pérez GR. Urinary excretion profile of microRNAs related to renal fibrosis in Fabry disease patients. A pilot study. Meta Gene. 2019;19:212-8.
18) Jaurretche S, Pérez G, Antongiovanni N, Perretta F, Venera G. Variables associated with a urinary MicroRNAs excretion profile indicative of renal fibrosis in Fabry disease patients. Int J Chronic Dis. 2019;2019:4027606.
19) Jaurretche S, Pérez GR, Venera G. High Lyso-Gb3 plasma levels associated with decreased miR-29 and miR-200 urinary excretion in young non-albuminuric male patient with classic Fabry disease. Case Rep Nephrol. 2019;2019:4980942.
20) Waldek S, Patel MR, Banikazemi M, Lemay R, Lee P. Life expectancy and cause of death in males and females with Fabry disease: findings from the Fabry Registry. Genet Med. 2009;11(11):790-6.
21) Ortiz A, Oliveira JP, Waldek S, Warnock DG, Cianciaruso B, Wanner C; Fabry Registry. Nephropathy in males and females with Fabry disease: cross-sectional description of patients before treatment with enzyme replacement therapy. Nephrol Dial Transplant. 2008;23(5):1600-7.
22) Namdar M. Electrocardiographic changes and arrhythmia in Fabry disease. Front Cardiovasc Med. 2016;3:7.
23) Jaurretche S, Antogiovanni N, Perretta F. Prevalence of chronic kidney disease in fabry disease patients: Multicenter cross sectional study in Argentina. Mol Genet Metab Rep. 2017;12:41-3.
24) Mehta A, Widmer U. Natural history of Fabry disease. En: Mehta A, Beck M, Sunder-Plassmann G (eds.). Fabry Disease: Perspectives from 5 years of FOS [Internet]. Oxford: Oxford PharmaGenesis, 2006. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK11572/ (Consulta: 8/01/2020).
25) Jaurretche S, Cabrera G. Evaluación pre trasplante renal en el paciente con Enfermedad de Fabry. Diál Traspl. 2016;37(2): 9-17.
26) Fogo AB, Bostad L, Svarstad E, Cook WJ, Moll S, Barbey F, et al.; all members of the International Study Group of Fabry Nephropathy (ISGFN). Scoring system for renal pathology in Fabry disease: report of the International Study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant. 2010;25(7):2168-77.
27) Rozenfeld P A, de los Angeles Bolla M, Quieto P, Pisani A, Feriozzi S, Neuman P, et al. Pathogenesis of Fabry nephropathy: the pathways leading to fibrosis. Mol Genet Metab. 2020;129(2):132-41.
28) Becherucci F, Romagnani P. When foots come first: early signs of podocyte injury in Fabry nephropathy without proteinuria. Nephron. 2015;129(1):3-5.
29) Trimarchi H, Canzonieri R, Schiel A, Costales-Collaguazo C, Politei J, Stern A, et al. Increased urinary CD80 excretion and podocyturia in Fabry disease. J Transl Med. 2016;14(1):289.
30) Schiffmann R, Warnock DG, Banikazemi M, Bultas J, Linthorst GE, Packman S, et al. Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant. 2009;24(7):2102-11.
31) Jaurretche S, Antongiovanni N, Perretta F. Enfermedad vascular en pacientes varones con enfermedad de Fabry en hemodiálisis: estudio de cohorte retrospectivo en Argentina. Rev Nefrol Dial Traspl. 2019;39(2):101-7.
32) Wanner C, Oliveira JP, Ortiz A, Mauer M, Germain DP, Linthorst GE, et al. Prognostic indicators of renal disease progression in adults with Fabry disease: natural history data from the Fabry Registry. Clin J Am Soc Nephrol. 2010;5(12):2220-8.
33) Schiffmann R, Waldek S, Benigni A, Auray-Blais C. Biomarkers of Fabry disease nephropathy. Clin J Am Soc Nephrol. 2010;5(2):360-4.
34) Jaurretche S, Antongiovanni N, Perretta F. Nefropatía por enfermedad de Fabry. Rol del nefrólogo y variables clínicas asociadas al diagnóstico. Nefrología (Madr.). 2019;39(3):294-300.
35) Weidemann F, Sánchez-Niño MD, Politei J, Oliveira JP, Wanner C, Warnock DG, et al. Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Orph J Rare Dis. 2013;8(1):116.
36) Mauer M, Sokolovskiy A, Barth JA, Castelli JP, Williams HN, Benjamin ER, et al. Reduction of podocyte globotriaosylceramide content in adult male patients with Fabry disease with amenable GLA mutations following 6 months of migalastat treatment. J Med Genet. 2017;54(11):781-6.
37) Tøndel C, Ramaswami U, Aakre KM, Wijburg F, Bouwman M, Svarstad E. Monitoring renal function in children with Fabry disease: comparisons of measured and creatinine-based estimated glomerular filtration rate. Nephrol Dial Transplant. 2009;25(5):1507-13.
38) Feriozzi S, Germain DP, Di RV, Legrand A, Ricci R, Barbey, F. Cystatin C as a marker of early changes of renal function in Fabry nephropathy. J Nephrol. 2007;20(4):437-43.
39) Torralba-Cabeza MA, Olivera S, Hughes DA, Pastores GM, Mateo RN, Pérez-Calvo JI. Cystatin C and NT-proBNP as prognostic biomarkers in Fabry disease. Mol Genet Metab. 2011;104(3):301-7.
40) Lepedda AJ, Fancellu L, Zinellu E, De Muro P, Nieddu G, Deiana GA, et al. Urine bikunin as a marker of renal impairment in Fabry's disease. Biomed Res Int. 2013;2013:205948.
41) Aguiar P, Azevedo O, Pinto R, Marino J, Baker R, Cardoso C, et al. New biomarkers defining a novel early stage of Fabry nephropathy: A diagnostic test study. Mol Genet Metab. 2017;121(2):162-9.
42) Trimarchi H, Canzonieri R, Muryan A, Schiel A, Araoz A, Forrester M, et al. Copious podocyturia without proteinuria and with normal renal function in a young adult with Fabry disease. Case Rep Nephrol. 2015;2015:257628.
43) Trimarchi H, Canzonieri R, Schiel A, Politei J, Stern A, Andrews J, et al. Podocyturia is significantly elevated in untreated vs treated Fabry adult patients. J Nephrol. 2016;29(6):791-7.
44) Fall B, Scott CR, Mauer M, Shankland S, Pippin J, Jefferson JA, et al. Urinary podocyte loss is increased in patients with Fabry disease and correlates with clinical severity of Fabry nephropathy. PloS One. 2016;11(12):e0168346.
45) McCafferty EH, Scott LJ. Migalastat: a review in Fabry disease. Drugs. 2019;79(5):543-54.
46) Tuttolomondo A, Simonetta I, Duro G, Pecoraro R, Miceli S, Colomba P, et al. Inter-familial and intra-familial phenotypic variability in three Sicilian families with Anderson–Fabry disease. OncoTarget. 2017;8(37):61415-24.
47) Hughes DA, Nicholls K, Shankar SP, Sunder-Plassmann G, Koeller D, Nedd K, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet. 2017;54(4):288-96.
48) Benjamin ER, Della Valle MC, Wu X, Katz E, Pruthi F, Bond S, et al. The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat. Genet Med. 2017;19(4):430-8.
49) Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilcox WR, et al. Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N Engl J Med. 2016;375(6):545-55.
50) Wu X, Katz E, Della Valle MC, Mascioli K, Flanagan JJ, Castelli JP, et al. A pharmacogenetic approach to identify mutant forms of alpha-galactosidase A that respond to a pharmacological chaperone for Fabry disease. Hum Mutat. 2011;32(8):965-77.
51) Jaurretche SP, Antongiovanni N, Perretta F. Direct correlation between age at diagnosis and severity of nephropathy in fabry disease patients. Indian J Nephrol. 2019;29(6):398.
52) Eng CM, Banikazemi M, Gordon RE, Goldman M, Phelps R, Kim L, et al. A phase 1/2 clinical trial of enzyme replacement in Fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet. 2001;68(3):711-22.
53) Schiffmann R, Kopp JB, Austin HA III, Sabnis S, Moore DF, Weibel T, et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA. 2001;285(21):2743-9.
54) Ortiz A, Abiose A, Bichet DG, Cabrera G, Charrow J, Germain DP, et al. Time to treatment benefit for adult patients with Fabry disease receiving agalsidase β: data from the Fabry Registry. J Med Genet. 2016;53(7):495-502.
55) Germain DP, Waldek S, Banikazemi M, Bushinsky DA, Charrow J, Desnick RJ, et al. Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J Am Soc Nephrol. 2007;18(5):1547-57.
56) Fan J-Q, Ishii S, Asano N, Suzuki Y. Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med. 1999;5(1):112-5.
57) Yam GH, Zuber C, Roth J. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder. Faseb J. 2005;19(1):12-8.
58) Asano N, Ishii S, Kizu H, Ikeda K, Yasuda K, Kato A, et al. In vitro inhibition and intracellular enhancement of lysosomal alpha-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur J Biochem. 2000;267(13):4179-86.
59) Khanna R, Soska R, Lun Y, Feng J, Frascella M, Young B, et al. The pharmacological chaperone 1-deoxygalactonojirimycin reduces tissue globotriaosylceramide levels in a mouse model of Fabry disease. Mol Ther. 2010;18(1):23-33.
60) Ishii S, Chang H-H, Yoshioka H, Shimada T, Mannen K, Higuchi Y, et al. Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease. J Pharmacol Exp Ther. 2009;328(3):723-31.
61) Young-Gqamana B, Brignol N, Chang HH, Khanna R, Soska R, Fuller M, et al. Migalastat HCl reduces globotriaosylsphingosine (lyso-Gb3) in Fabry transgenic mice and in the plasma of Fabry patients. PLoS One. 2013;8(3):e57631.
62) Johnson FK, Mudd PN Jr, Bragat A, Adera M, Boudes P. Pharmacokinetics and safety of migalastat HCl and effects on agalsidase activity in healthy volunteers. Clin Pharmacol Drug Dev. 2013;2(2):120-32.
63) Germain DP, Giugliani R, Hughes DA, Metha A, Nicholls K, Barisoni L, et al. Safety and pharmacodynamic effects of a pharmacological chaperone on alphagalactosidase A activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies. Orphanet J Rare Dis. 2012;7(91):1-11.
64) Giugliani R, Waldek S, Germain DP, Nicholls K, Bichet DG, Simosky JK, et al. A phase 2 study of migalastat hydrochloride in females with Fabry disease: selection of population, safety and pharmacodynamic effects. Mol Genet Metab. 2013;109(1):86-92.
Derechos de autor 2020 Revista de Nefrología, Diálisis y Trasplante
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.