La vasculatura sistémica en la enfermedad renal crónica. Segunda parte
Resumen
Existen cambios estructurales importantes de la pared arterial en, prácticamente, todas las etapas clínicas de la enfermedad renal crónica. Son un marcador pronóstico y, al mismo tiempo, un factor de progresión y de eventos, tanto cardiovasculares como renales. Es por ello que tener una estimación del daño vascular y, mejor aún, un diagnóstico adecuado es esencial.
La evaluación vascular en la consulta clínica, mediante la determinación de la presión del pulso y el índice de presión arterial sistólica tobillo-brazo, sirven como una orientación inicial del daño arterial de estos pacientes. Hoy podemos valorar, de manera accesible, las lesiones estructurales de las arterias mediante la cuantificación y caracterización, por ecografía vascular, de las placas ateroscleróticas de carótidas y femorales y por la velocidad de onda del pulso. En la gran mayoría de los pacientes renales la velocidad de onda del pulso está muy aumentada, comparada con poblaciones sanas, como consecuencia de múltiples mecanismos patogénicos. Las alteraciones vasculares, tanto de los grandes vasos como de la microcirculación, están fuertemente vinculados con la progresión de la enfermedad renal crónica, así como con complicaciones y eventos renales, cardiacos y cerebrales.
En conclusión, en individuos con riesgo de desarrollar enfermedad renal crónica, o en quienes ya la padecen, la medición de la rigidez arterial y de los daños ateroscleróticos de la pared vascular serían parámetros centrales para su evaluación y uno de los objetivos a considerar al diseñar estrategias preventivas del deterioro de los órganos blanco y eventos.
Citas
2) Safar ME, London GM, Plante GE. Arterial stiffness and kidney function. Hypertension. 2004;43(2):163-8.
3) Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505-11.
4) Ohno Y, Kanno Y, Takenaka T. Central blood pressure and chronic kidney disease. World J Nephrol. 2016;5(1):90-100.
5) Townsend RR. Arterial stiffness in CKD: a review. Am J Kidney Dis. 2019;73(2):240-7.
6) Harris TB, Launer LJ, Eiriksdottir G, Kjartansson O, Jonsson PV, Sigurdsson G, et al. Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. Am J Epidemiol. 2007;165(9):1076-87.
7) Sedaghat S, Mattace-Raso FU, Hoorn EJ, Uitterlinden AG, Hofman A, Ikram MA, et al. Arterial stiffness and decline in kidney function. Clin J Am Soc Nephrol. 2015;10(12):2190-7.
8) Huang N, Foster MC, Mitchell GF, Andresdottir MB, Eiriksdottir G, Gudmundsdottir H, et al. Aortic stiffness and change in glomerular filtration rate and albuminuria in older people. Nephrol Dial Transplant. 2017;32(4):677-84.
9) Woodard T, Sigurdsson S, Gotal JD, Torjesen AA, Inker LA, Aspelund T, et al. Mediation analysis of aortic stiffness and renal microvascular function. J Am Soc Nephrol. 2015;26(5):1181-7.
10) Prunotto M, Gabbiani G, Pomposiello S, Ghiggeri G, Moll S. The kidney as a target organ in pharmaceutical research. Drug Discov Today. 2011;16(5-6):244-59.
11) Vivian E, Mannebach C. Therapeutic approaches to slowing the progression of diabetic nephropathy - is less best? Drugs Context. 2013;2013:212249.
12) Franklin SS, Khan SA, Wong ND, Larson MG, Levy D. Is pulse pressure useful in predicting risk for coronary heart Disease? The Framingham heart study. Circulation. 1999;100(4):354-60.
13) Franklin SS. Pulse pressure as a risk factor. Clin Exp Hypertens. 2004;26(7-8):645-52.
14) Selvaraj S, Steg PG, Elbez Y, Sorbets E, Feldman LJ, Eagle KA, et al. Pulse pressure and risk for cardiovascular events in patients with atherothrombosis: from the REACH Registry. J Am Coll Cardiol. 2016;67(4):392-403.
15) Fernández-Fresnedo G, Rodrigo E, de Francisco AL, de Castro SS, Castañeda O, Arias M. Role of pulse pressure on cardiovascular risk in chronic kidney disease patients. J Am Soc Nephrol. 2006;17(12 Suppl 3):S246-9.
16) Arulkmaran N, Diwakar R. Tahir Z, Mohamed M, Kaski JC, Banerjee D. Pulse pressure and progression on chronic kidney disease. J Nephrol. 2010;23(2):189-93.
17) O'Hare AM, Glidden DV, Fox CS, Hsu CY. High prevalence of peripheral arterial disease in persons with renal insufficiency: results from the National Health and Nutrition Examination Survey 1999-2000. Circulation. 2004;109(3):320-3.
18) Wattanakit K, Folsom AR, Selvin E, Coresh J, Hirsch AT, Weatherley BD. Kidney function and risk of peripheral arterial disease: results from the Atherosclerosis Risk in Communities (ARIC) Study. J Am Soc Nephrol. 2007;18(2):629-36.
19) Mostaza JM, Suarez C, Manzano L, Cairols M, García-Iglesias F, Sanchez-Alvarez J, et al. Relationship between ankle-brachial index and chronic kidney disease in hypertensive patients with no known cardiovascular disease. J Am Soc Nephrol. 2006;17(12 Suppl 3):S201-5.
20) Cheung A, Sarnak M, Yan G, Dwyer JT, Heyka RJ, Rocco MV, Teehan BP, Levey AS. Atherosclerotic cardiovascular disease risk in chronic hemodialysis patients. Kidney Int. 2000;58(1):353-62
21) Chen FA, Yang CY, Yang WC, Chen JY, Ng YY, Li SY, et al. Ankle-brachial index is a powerful predictor of renal outcome and cardiovascular events in patients with chronic kidney disease. ScientificWorldJournal. 2012;2012:238494.
22) Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: A report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257-65.
23) Charakida M, Masi S, Lüscher TF, Kastelein JJ, Deanfield JE. Assessment of atherosclerosis: the role of flow-mediated dilatation. Eur Heart J. 2010;31(23):2854-61.
24) Fliser D, Wiecek A, Suleymanlar G, Ortiz A, Massy Z, Lindholm B, et al.; for EUropean REnal and CArdiovascular Medicine working group of the European Renal Association-European Dialysis and Transplant Association (ERA-EDTA). The dysfunctional endothelium in CKD and in cardiovascular disease: mapping the origin(s) of cardiovascular problems in CKD and of kidney disease in cardiovascular conditions for a research agenda. Kidney Int Suppl. 2011;1(1):6-9.
25) Yilmaz MI, Saglam M, Carrero JJ, Qureshi AR, Caglar K, Eyileten T, et al. Serum visfatin concentration and endothelial dysfunction in chronic kidney disease. Nephrol Dial Transplant. 2008;23(3):959-65.
26) Touboul PJ, Vicaut E, Labreuche J, Belliard JP, Cohen S, Kownator S, et al. Correlation between the Framingham risk score and intima media thickness: the Paroi Artérielle et Risque Cardio-vasculaire (PARC) study. Atherosclerosis. 2007;192(2):363-9.
27) Nambi V, Chambless L, Folsom AR, He M, Hu Y, Mosley T, et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol. 2010;55(15):1600-7.
28) Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115(4):459-67.
29) Shoji T, Emoto M, Tabata T, Kimoto E, Shinohara K, Maekawa K, et al. Advanced atherosclerosis in predialysis patients with chronic renal failure. Kidney Int. 2002;61(6):2187-92.
30) Park TH. Evaluation of Carotid Plaque Using Ultrasound Imaging. J Cardiovasc Ultrasound. 2016;24(2):91-5.
31) Palanca A, Castelblanco E, Perpiñán H, Betriu À, Soldevila B, Valdivielso JM, et al. Prevalence and progression of subclinical atherosclerosis in patients with chronic kidney disease and diabetes. Atherosclerosis. 2018;276:50-57.
32) Lindner A, Charra B, Sherrard DJ, Scribner BH. Accelerated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med. 1974;290(13):697-701.
33) Olechnowicz-Tietz S, Gluba A, Paradowska A, Banach M, Rysz J. The risk of atherosclerosis in patients with chronic kidney disease. Int Urol Nephrol. 2013;45(6):1605-12.
34) Palanca A, Castelblanco E, Betriu A, Perpiñán H, Soldevila B, Valdivielso JM, et al. Subclinical atherosclerosis burden predicts cardiovascular events in individuals with diabetes and chronic kidney disease. Cardiovasc Diabetol. 2019;18:93.
35) Calogero E, Fabiani I, Pugliese NR, Santini V, Ghiadoni L, Di Stefano R, et al. Three-dimensional echographic evaluation of carotid artery disease. J Cardiovasc Echogr. 2018;28(4):218-27.
36) Go A, Chertow G, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risk of death, cardiovascular events and hospitalizations. N Engl J Med. 2004;351(13):1296-305.
37) Bos D, Leening M, Kavousi M, Hofman A, Franco OH, van der Lugt A, et al. Comparison of atherosclerotic calcification in major vessels beds on the risk of all-cause and cause-specific mortality: The Rotterdam study. Circ Cardiovasc Imaging. 2015;8(12):e003843.
38) Jean G, Bresson E, Terrat JC, Vanel T, Hurot JM, Lorriaux C, et al. Peripheral vascular calcification in long-haemodialysis patients: associated factors and survival consequences. Nephrol Dial Transplant. 2009;24(3):948-55.
39) Blaha MJ, Budoff MJ, Tota-Maharaj R, Dardari ZA, Wong ND, Kronmal RA, et al. Improving the CAC Score by addition of regional measures of calcium distribution: Multi-Ethnic Study of Atherosclerosis. JACC Cardiovasc Imaging. 2016;9(12):1407-1416.
40) Ferencik M, Pencina KM, Liu T, Ghemigian K, Baltrusaitis K, Massaro JM, et al. Coronary Artery Calcium Distribution Is an Independent Predictor of Incident Major Coronary Heart Disease Events: Results From the Framingham Heart Study. Circ Cardiovasc Imaging. 2017;10(10):e006592.
41) Matsuoka M, Iseki K, Tamashiro M, Fujimoto N, Higa N, Touma T, et al. Impact of high coronary artery calcification score (CACS) on survival in patients on chronic hemodialysis. Clin Exp Nephrol. 20004;8(1):54-8.
42) Nichols WW, O’Rourke MF, McDonald DA. Blood flow in arteries: theoretic, experimental, and clinical principles. 6th ed. London: Hodder Arnold, 2011. 755 p.
43) Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30(3):445-8.
44) Zócalo Y, Bia D. Presión aórtica central y parámetros clínicos derivados de la onda del pulso: evaluación no invasiva en la práctica clínica. Rev Urug Cardiol. 2014;29:215-30.
45) Chirinos JA, Segers P, Hughes T, Townsend R. Large-artery stiffness in health and disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;74(9):1237-63.
46) Reference Values for Arterial Stiffness' Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: 'establishing normal and reference values'. Eur Heart J. 2010;31(19):2338-50.
47) Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021-104.
48) Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318-27.
49) Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63(7):636-646.
50) Townsend RR, Anderson AH, Chirinos JA, Feldman HI, Grunwald JE, Nessel L, et al. Association of pulse wave velocity with chronic kidney disease progression and mortality: findings from the CRIC Study (Chronic Renal Insufficiency Cohort). Hypertension. 2018;71(6):1101-7.
51) Jablonski KL, Decker E, Perrenoud L, Kendrick J, Chonchol M, Seals DR, et al. Assessment of vascular function in patients with chronic kidney disease. J Vis Exp. 2014;(88):51478.
52) Lioufas N, Hawley CM, Cameron JD, Toussaint ND. Chronic kidney disease and pulse wave velocity: a narrative review. Int J Hypertens. 2019;2019:9189362.
53) Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99(18):2434-9.
54) Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation. 2001;103(7):987-92.
55) Pannier B, Guérin AP, Marchais SJ, Safar ME, London GM. Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. Hypertension. 2005;45(4):592-6.
56) Shoji T, Emoto M, Shinohara K, Kakiya R, Tsujimoto Y, Kishimoto H, et al. Diabetes mellitus, aortic stiffness, and cardiovascular mortality in end-stage renal disease. J Am Soc Nephrol. 2001;12(10):2117-24.
57) Zoungas S, Cameron JD, Kerr PG, Wolfe R, Muske C, McNeil JJ, et al. Association of carotid intima-medial thickness and indices of arterial stiffness with cardiovascular disease outcomes in CKD. Am J Kidney Dis. 2007;50(4):622-30.
58) McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB. Central blood pressure: current evidence and clinical importance. Eur Heart J. 2014;35(26):1719-25.
59) Sharman JE, Avolio AP, Baulmann J, Benetos A, Blacher J, Blizzard CL, et al. Validation of non-invasive central blood pressure devices: ARTERY Society task force consensus statement on protocol standardization. Eur Heart J. 2017;38(37):2805-12.
60) Herbert A, Cruickshank JK, Laurent S, Boutouyrie P; Reference Values for Arterial Measurements Collaboration. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J. 2014;35(44):3122-33.
61) Hashimoto J. Central hemodynamics and target organ damage in hypertension. Tohoku J Exp Med. 2014;233(1):1-8.
62) Williams B, Lacy PS, Thurston H, Thom S, Hughes A, Cruickshank K, et al. Response to Letters regarding article, “Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) Study”. Circulation. 2006;114(15):e540-1.
63) Ryuzaki M, Morimoto S, Niiyama M, Seki Y, Yoshida N, Oshima Y, et al. The relationships between the differences in the central blood pressure and brachial blood pressure and other factors in patients with essential hypertension. Intern Med. 2017;56(6):587-96.
64) Rahman M, Hsu JY, Desai N, Hsu CY, Anderson AH, Appel LJ, et al. Central blood pressure and cardiovascular outcomes in chronic kidney disease. Clin J Am Soc Nephrol. 2018;13(4):585-95.
65) Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension. 2007;50(1):197-203.
66) Pini R, Cavallini MC, Palmieri V, Marchionni N, Di Bari M, Devereux RB, et al. Central but not brachial blood pressure predicts cardiovascular events in an unselected geriatric population: the ICARe Dicomano Study. J Am Coll Cardiol. 2008;51(25):2432-9.
67) Safar ME, Blacher J, Pannier B, Guerin AP, Marchais SJ, Guyonvarc'h PM, et al. Central pulse pressure and mortality in end-stage renal disease. Hypertension. 2002;39(3):735-8.
Derechos de autor 2020 Revista de Nefrología, Diálisis y Trasplante
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.