Efecto protector de la naringina en modelo de rata con lesión por reperfusión de isquemia renal
Resumen
Objetivo: Nuestro objetivo fue investigar si la naringina protege del daño en los riñones provocado por isquemia-reperfusión renal en ratas. Material y métodos: De forma aleatoria, dividimos 24 ratas albinas Wistar hembras en tres grupos: 1) grupo control, en el que solo se les realizó a las ratas una nefrectomía derecha; 2) un segundo grupo isquemia-reperfusión, con nefrectomía derecha e isquemia de riñón izquierdo (1 h) y reperfusión (24 h); 3) un tercer grupo al que se le administró 50 mg/kg de naringina por vía oral una vez al día durante dos semanas antes de la isquemia-reperfusión. Por medio de un ensayo inmunoabsorbente ligado a enzimas (ELISA), se midieron las siguientes expresiones: ciclooxigenasa-2 (COX-2), fosfolipasa citosólica A2 (cPLA2), óxido nítrico sintetasa inducible (ONSi), caspasa-3, linfoma de células B2 (Bcl-2), proteína X asociada a Bcl-2 (Bax), creatinina sérica (Cr), factor de necrosis tumoral alfa (FNT-α) e interleucina 6 (IL-6). Resultados: Las ratas tratadas con naringina por isquemia-reperfusión renal mostraron un descenso significativo en los niveles de Cr, IL-6 y FNT-α en comparación con las ratas a las que se les indujo isquemia-reperfusión renal pero que no se les suministró naringina. La isquemia-reperfusión renal provocó un descenso de los niveles de Bcl-2 (1,72 ± 0,20 pg/ml) y un ascenso en los niveles de COX-2 (11882 ± 642 pg/ml), cPLA2 (2448 ± 139 pg/ml), ONSi (4331 ± 438 UI/ml), caspasa-3 escindida (7,33 ± 0,76 ng/ml) y Bax (2,33 ± 0.,44 ng/ml). El tratamiento con naringina diminuyeron estos efectos en el riñón (7,47 ± 60,35 pg/ml; 9299 ± 327 pg/ml; 2001 ± 78 pg/ml; 3112 ± 220 UI/ml; 3.38 ± 0.54 ng/ml; 2.33 ± 0,44 ng/ml, respectivamente) (p <0,05). Conclusión: En este estudio se demostró que el tratamiento con naringina atenuó el daño renal producido por isquemia-reperfusión en ratas.
Citas
2) Yamamoto S, Hagiwara S, Hidaka S, Shingu C, Goto K, Kashima K, et al. The antioxidant EPC-K1 attenuates renal ischemia-reperfusion injury in a rat model. Am J Nephrol. 2011;33(6):485-90. doi: 10.1159/000327820.
3) Akçetin Z, Busch A, Kessler G, Heynemann H, Holtz J, Brömme HJ. Evidence for only a moderate lipid peroxidation during ischemia-reperfusion of rat kidney due to its high antioxidative capacity. Urol Res. 1999;27(4):280-4. doi: 10.1007/s002400050124.
4) Paller MS. Acute renal failure: controversies, clinical trials, and future directions. Semin Nephrol. 1998 Sep;18(5):482-9.
5) Reiter RJ, Guerrero JM, Garcia JJ, Acuña-Castroviejo D. Reactive oxygen intermediates, molecular damage, and aging. Relation to melatonin. Ann N Y Acad Sci. 1998;854:410-24. doi: 10.1111/j.1749-6632.1998.tb09920.x.
6) Lindsay TF, Liauw S, Romaschin AD, Walker PM. The effect of ischemia/reperfusion on adenine nucleotide metabolism and xanthine oxidase production in skeletal muscle. J Vasc Surg. 1990;12(1):8-15. doi: 10.1067/mva.1990.19946.
7) Chamoun F, Burne M, O'Donnell M, Rabb H. Pathophysiologic role of selectins and their ligands in ischemia reperfusion injury. Front Biosci. 2000;5:E103-9. doi: 10.2741/chamoun.
8) Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem. 2007;282(5):2871-9. doi: 10.1074/jbc.M608083200.
9) Beutler B. Neo-ligands for innate immune receptors and the etiology of sterile inflammatory disease. Immunol Rev. 2007;220:113-28. doi: 10.1111/j.1600-065X.2007.00577.x.
10) Chatterjee PK, Patel NS, Sivarajah A, Kvale EO, Dugo L, Cuzzocrea S, et al. GW274150, a potent and highly selective inhibitor of iNOS, reduces experimental renal ischemia/reperfusion injury. Kidney Int. 2003;63(3):853-65. doi: 10.1046/j.1523-1755.2003.00802.x.
11) Bharti S, Rani N, Krishnamurthy B, Arya DS. Preclinical evidence for the pharmacological actions of naringin: a review. Planta Med. 2014;80(6):437-51. doi: 10.1055/s-0034-1368351.
12) Zeng L, Zhen Y, Chen Y, Zou L, Zhang Y, Hu F, et al. Naringin inhibits growth and induces apoptosis by a mechanism dependent on reduced activation of NF‑κB/COX‑2‑caspase-1 pathway in HeLa cervical cancer cells. Int J Oncol. 2014;45(5):1929-36. doi: 10.3892/ijo.2014.2617.
13) Gutiérrez-Venegas G, Ventura-Arroyo JA, Arreguín-Cano JA, Ostoa-Pérez MF. Flavonoids inhibit iNOS production via mitogen activated proteins in lipoteichoic acid stimulated cardiomyoblasts. Int Immunopharmacol. 2014;21(2):320-7. doi: 10.1016/j.intimp.2014.04.010.
14) Hamada T, Tsuchihashi S, Avanesyan A, Duarte S, Moore C, Busuttil RW, et al. Cyclooxygenase-2 deficiency enhances Th2 immune responses and impairs neutrophil recruitment in hepatic ischemia/reperfusion injury. J Immunol. 2008;180(3):1843-53. doi: 10.4049/jimmunol.180.3.1843.
15) Williams P, López H, Britt D, Chan C, Ezrin A, Hottendorf R. Characterization of renal ischemia-reperfusion injury in rats. J Pharmacol Toxicol Methods. 1997;37(1):1-7. doi: 10.1016/s1056-8719(96)00141-4.
16) Carrier D, Bou Khalil M, Kealey A. Modulation of phospholipase A2 activity by aminoglycosides and daptomycin: a Fourier transform infrared spectroscopic study. Biochemistry. 1998;37(20):7589-97. doi: 10.1021/bi971793d.
17) Hosaka EM, Santos OFP, Seguro AC, Vattimo MFF. Effect of cyclooxygenase inhibitors on gentamicin-induced nephrotoxicity in rats. Braz J Med Biol Res. 2004;37(7):979-85. doi: 10.1590/S0100-879X2004000700006.
18) Kao SJ, Lei HC, Kuo CT, Chang MS, Chen BC, Chang YC, et al. Lipoteichoic acid induces nuclear factor-kappaB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology. 2005;115(3):366-74. doi: 10.1111/j.1365-2567.2005.02160.x.
19) Lien YH, Lai LW, Silva AL. Pathogenesis of renal ischemia/reperfusion injury: lessons from knockout mice. Life Sci. 2003;74(5):543-52. doi: 10.1016/j.lfs.2003.08.001.
20) Ceriello A, Falleti E, Motz E, Taboga C, Tonutti L, Ezsol Z, et al. Hyperglycemia-induced circulating ICAM-1 increase in diabetes mellitus: the possible role of oxidative stress. Horm Metab Res. 1998;30(3):146-9. doi: 10.1055/s-2007-978854.
21) Chai YC, Ashraf SS, Rokutan K, Johnston RB Jr, Thomas JA. S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: evidence against a role for glutathione disulfide. Arch Biochem Biophys. 1994;310(1):273-81. doi: 10.1006/abbi.1994.1167.
22) Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology. 2000;7(3):153-63. doi: 10.1016/s0928-4680(00)00053-5.
23) Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J Sci Food Agric. 2010;90(7):1238-44. doi: 10.1002/jsfa.3959.
24) Amini N, Sarkaki A, Dianat M, Mard SA, Ahangarpour A, Badavi M. The renoprotective effects of naringin and trimetazidine on renal ischemia/reperfusion injury in rats through inhibition of apoptosis and downregulation of micoRNA-10a. Biomed Pharmacother. 2019;112:108568. doi: 10.1016/j.biopha.2019.01.029.
25) Singh D, Chopra K. The effect of naringin, a bioflavonoid on ischemia-reperfusion induced renal injury in rats. Pharmacol Res. 2004;50(2):187-93. doi: 10.1016/j.phrs.2004.01.007.
Derechos de autor 2021 Revista de Nefrología, Diálisis y Trasplante
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.