HLA-G y su función en trasplantes de órganos sólidos
Resumen
El trasplante de órganos sólidos se ha considerado el fin último para algunas enfermedades crónicas en estadio terminal, sin embargo, las incompatibilidades del HLA entre el donante y el receptor pueden permitir que la alorespuesta se convierta en nociva para el órgano trasplantado, respuesta que puede ser tanto innata como adaptativa.
Se ha identificado el HLA-G como una molécula natural inductora de tolerancia principalmente en el embarazo y se considera una molécula del HLA clase I no clásico, sin embargo, comparte algunas características estructurales al HLA clásico. Los genes HLA-G se caracterizan por tener un limitado polimorfismo y una distribución celular y tisular restringida al trofoblasto fetal y células del epitelio tímico entre otras. La búsqueda persistente de la tolerancia en los trasplantes de órganos ha permitido un estudio específico del HLA-G, como posibilidad terapéutica para aumentar la sobrevida tanto de los injertos como de los pacientes trasplantados, es por tal motivo que se realiza una revisión en dicha molécula para estimular la investigación y entendimiento de sus funciones.
Citas
2) Hviid TV. HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Hum Reprod Update. 2006;12(3):209-32. doi: 10.1093/humupd/dmi048.
3) Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 8th ed. Philadelphia, PA: Elsevier/Saunders, 2015. 535 p.
4) Moreau P, Flajollet S, Carosella ED. Non-classical transcriptional regulation of HLA-G: an update. J Cell Mol Med. 2009;13(9B):2973-89. doi: 10.1111/j.1582-4934.2009.00800.x.
5) Mouillot G, Marcou C, Zidi I, Guillard C, Sangrouber D, Carosella ED, et al. Hypoxia modulates HLA-G gene expression in tumor cells. Hum Immunol. 2007;68(4):277-85. doi: 10.1016/j.humimm.2006.10.016.
6) Yang JS, Li BJ, Lu HW, Chen Y, Lu C, Zhu RX, et al. Serum miR-152, miR-148a, miR-148b, and miR-21 as novel biomarkers in non-small cell lung cancer screening. Tumour Biol. 2015;36(4):3035-42. doi: 10.1007/s13277-014-2938-1.
7) Castelli EC, Ramalho J, Porto IO, Lima TH, Felício LP, Sabbagh A, et al. Insights into HLA-G genetics provided by worldwide haplotype diversity. Front Immunol. 2014;5:476. doi: 10.3389/fimmu.2014.00476.
8) Jassem RM, Shani WS, Loisel DA, Sharief M, Billstrand C, Ober C. HLA-G polymorphisms and soluble HLA-G protein levels in women with recurrent pregnancy loss from Basrah province in Iraq. Hum Immunol. 2012;73(8):811-7. doi: 10.1016/j.humimm.2012.05.009.
9) Donadi EA, Castelli EC, Arnaiz-Villena A, Roger M, Rey D, Moreau P. Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell Mol Life Sci. 2011;68(3):369-95. doi: 10.1007/s00018-010-0580-7.
10) Castro MJ, Morales P, Martínez-Laso J, Allende L, Rojo-Amigo R, González-Hevilla M, et al. Evolution of MHC-G in humans and primates based on three new 3'UT polymorphisms. Hum Immunol. 2000;61(11):1157-63. doi: 10.1016/s0198-8859(00)00188-9.
11) Le Page ME, Goodridge JP, John E, Christiansen FT, Witt CS. Killer Ig-like receptor 2DL4 does not mediate NK cell IFN-γ responses to soluble HLA-G preparations. J Immunol. 2014;192(2):732-40. doi: 10.4049/jimmunol.1301748.
12) Bahri R, Hirsch F, Josse A, Rouas-Freiss N, Bidere N, Vasquez A, et al. Soluble HLA-G inhibits cell cycle progression in human alloreactive T lymphocytes. J Immunol. 2006;176(3):1331-9. doi: 10.4049/jimmunol.176.3.1331.
13) Naji A, Menier C, Morandi F, Agaugué S, Maki G, Ferretti E, et al. Binding of HLA-G to ITIM-bearing Ig-like transcript 2 receptor suppresses B cell responses. J Immunol. 2014;192(4):1536-46. doi: 10.4049/jimmunol.1300438.
14) Apps R, Gardner L, Sharkey AM, Holmes N, Moffett A. A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur J Immunol. 2007;37(7):1924-37. doi: 10.1002/eji.200737089.
15) Liang S, Baibakov B, Horuzsko A. HLA-G inhibits the functions of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur J Immunol. 2002;32(9):2418-26. doi: 10.1002/1521-4141(200209)32:9<2418::AID-IMMU2418>3.0.CO;2-L.
16) LeMaoult J, Krawice-Radanne I, Dausset J, Carosella ED. HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc Natl Acad Sci U S A. 2004;101(18):7064-9. doi: 10.1073/pnas.0401922101.
17) Le Rond S, Azéma C, Krawice-Radanne I, Durrbach A, Guettier C, Carosella ED, et al. Evidence to support the role of HLA-G5 in allograft acceptance through induction of immunosuppressive/regulatory T cells. J Immunol. 2006;176(5):3266-76. doi: 10.4049/jimmunol.176.5.3266.
18) Amodio G, Comi M, Tomasoni D, Gianolini ME, Rizzo R, LeMaoult J, et al. HLA-G expression levels influence the tolerogenic activity of human DC-10. Haematologica. 2015;100(4):548-57. doi: 10.3324/haematol.2014.113803.
19) Brown R, Kabani K, Favaloro J, Yang S, Ho PJ, Gibson J, et al. CD86+ or HLA-G+ can be transferred via trogocytosis from myeloma cells to T cells and are associated with poor prognosis. Blood. 2012;120(10):2055-63. doi: 10.1182/blood-2012-03-416792.
20) Lila N, Carpentier A, Amrein C, Khalil-Daher I, Dausset J, Carosella ED. Implication of HLA-G molecule in heart-graft acceptance. Lancet. 2000;355(9221):2138. doi: 10.1016/S0140-6736(00)02386-2.
21) Bahri R, Naji A, Menier C, Charpentier B, Carosella ED, Rouas-Freiss N, et al. Dendritic cells secrete the immunosuppressive HLA-G molecule upon CTLA4-Ig treatment: implication in human renal transplant acceptance. J Immunol. 2009;183(11):7054-62. doi: 10.4049/jimmunol.0803054.
22) Sheshgiri R, Gustafsson F, Sheedy J, Rao V, Ross HJ, Delgado DH. Everolimus but not mycophenolate mofetil therapy is associated with soluble HLA-G expression in heart transplant patients. J Heart Lung Transplant. 2009;28(11):1193-7. doi: 10.1016/j.healun.2009.07.009.
23) Misra MK, Pandey SK, Kapoor R, Sharma RK, Kapoor R, Prakash S, et al. HLA-G gene expression influenced at allelic level in association with end stage renal disease and acute allograft rejection. Hum Immunol. 2014;75(8):833-9. doi: 10.1016/j.humimm.2014.06.005.
24) Rebmann V, da Silva Nardi F, Wagner B, Horn PA. HLA-G as a tolerogenic molecule in transplantation and pregnancy. J Immunol Res. 2014;2014:297073. doi: 10.1155/2014/297073.
25) Capittini C, Bergamaschi P, Sachetto S, Truglio M, Viola M, Marchesi A, et al. The plasma levels of soluble HLA-G molecules correlate directly with CD34+ cell concentration and HLA-G 14bp insertion/insertion polymorphism in cord blood donors. Blood Transfus. 2014;12(Suppl 1):s361-6. doi: 10.2450/2012.0144-12.
26) Jacqueline Macedo Pereira J. Molécula HLA-G y su importancia en la inmunorregulación de la unidad feto-materna: aplicaciones en inmunoterapia celular [Tesis]. Universidad Complutense de Madrid, 2015. Disponible en:
27) Cervera I, Herraiz MA, Peñaloza J, Barbolla ML, Jurado ML, Macedo J, et al. Human leukocyte antigen-G allele polymorphisms have evolved following three different evolutionary lineages based on intron sequences. Hum Immunol. 2010;71(11):1109-15. doi: 10.1016/j.humimm.2010.07.003.
28)Rincón V, Manrique E. HLA-G: Su importancia inmunológica. Nova; 2006:4(5):91-9. doi: 10.22490/24629448.352.
29) Le Gal FA, Riteau B, Sedlik C, Khalil-Daher I, Menier C, Dausset J, et al. HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol. 1999;11(8):1351-6. doi: 10.1093/intimm/11.8.1351.
30)LeMaoult J, Daouya M, Wu J, Loustau M, Horuzsko A, Carosella ED. Synthetic HLA-G proteins for therapeutic use in transplantation. FASEB J. 2013;27(9):3643-51. doi: 10.1096/fj.13-228247.
31) Rouas-Freiss N, LeMaoult J, Moreau P, Dausset J, Carosella ED. HLA-G in transplantation: a relevant molecule for inhibition of graft rejection? Am J Transplant. 2003;3(1):11-6. doi: 10.1034/j.1600-6143.2003.30103.x.
32) Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: at the interface of maternal-fetal tolerance. Trends Immunol. 2017;38(4):272-86. doi: 10.1016/j.it.2017.01.009.
33) Ajith A, Portik-Dobos V, Horuzsko DD, Kapoor R, Mulloy LL, et al. HLA-G and humanized mouse models as a novel therapeutic approach in transplantation. Hum Immunol. 2020;81(4):178-85. doi: 10.1016/j.humimm.2020.02.006.
34) Baştürk B, Karakayali F, Emiroğlu R, Sözer O, Haberal A, Bal D, et al. Human leukocyte antigen-G, a new parameter in the follow-up of liver transplantation. Transplant Proc. 2006;38(2):571-4. doi: 10.1016/j.transproceed.2005.12.108.
35) Ezeakile M, Portik-Dobos V, Wu J, Horuzsko DD, Kapoor R, Jagadeesan M, et al. HLA-G dimers in the prolongation of kidney allograft survival. J Immunol Res. 2014;2014:153981. doi: 10.1155/2014/153981.
36) Shrestha B, Haylor J, Raftery A. Historical perspectives in kidney transplantation: an updated review. Prog Transplant. 2015;25(1):64-9, 76. doi: 10.7182/pit2015789.
37) Sass DA, Doyle AM. Liver and kidney transplantation: a half-century historical perspective. Med Clin North Am. 2016;100(3):435-48. doi: 10.1016/j.mcna.2015.12.001.
38) Becker LE, Süsal C, Morath C. Kidney transplantation across HLA and ABO antibody barriers. Curr Opin Organ Transplant. 2013;18(4):445-54. doi: 10.1097/MOT.0b013e3283636c20.
39) Billingham R, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172(4379):603-6. doi: 10.1038/172603a0.
40) Thorsby E. A short history of HLA. Tissue Antigens. 2009;74(2):101-16. doi: 10.1111/j.1399-0039.2009.01291.x.
41) Kissmeyer-Nielsen F, Olsen S, Petersen VP, Fjeldborg O. Hyperacute rejection of kidney allografts, associated with pre-existing humoral antibodies against donor cells. Lancet. 1966;2(7465):662-5. doi: 10.1016/s0140-6736(66)92829-7.
42) Lafferty KJ, Cunningham AJ. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci. 1975;53(1):27-42. doi: 10.1038/icb.1975.3.
43) Zinkernagel RM, Doherty PC. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature. 1974;251(5475):547-8. doi: 10.1038/251547a0.
44) Rowntree LC, Nguyen TH, Gras S, Kotsimbos TC, Mifsud NA. Deciphering the clinical relevance of allo-human leukocyte antigen cross-reactivity in mediating alloimmunity following transplantation. Curr Opin Organ Transplant. 2016;21(1):29-39. doi: 10.1097/MOT.0000000000000264.
45) Adams AB, Williams MA, Jones TR, Shirasugi N, Durham MM, Kaech SM, et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest. 2003;111(12):1887-95. doi: 10.1172/JCI17477.
46) Arnaiz-Villena A, Juarez I, Suarez-Trujillo F, López-Nares A, Vaquero C, Palacio-Gruber J, et al. HLA-G: function, polymorphisms and pathology. Int J Immunogenet. 2021;48(2):172-192. doi: 10.1111/iji.12513.
47) Pirri A, Contieri FC, Benvenutti R, Bicalho Mda G. A study of HLA-G polymorphism and linkage disequilibrium in renal transplant patients and their donors. Transpl Immunol. 2009;20(3):143-9. doi: 10.1016/j.trim.2008.09.012.
48) Durmanova V, Bandzuchova H, Zilinska Z, Tirpakova J, Kuba D, Buc M, et al. Association of HLA-G polymorphisms in the 3'UTR region and soluble HLA-G with kidney graft outcome. Immunol Invest. 2019;48(6):644-58. doi: 10.1080/08820139.2019.1610888.
49) Janssen M, Thaiss F, Nashan B, Koch M, Thude H. Donor derived HLA-G polymorphisms have a significant impact on acute rejection in kidney transplantation. Hum Immunol. 2019;80(3):176-83. doi: 10.1016/j.humimm.2018.12.011.
Derechos de autor 2022 Revista de Nefrología, Diálisis y Trasplante
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.