HLA-G and its role in solid organ transplants
Abstract
Solid organ transplantation has been considered the ultimate goal for some end-stage chronic diseases, however, HLA incompatibilities between the donor and the recipient may allow the alloresponse to become deleterious for the transplanted organ, a response that can be both innate and adaptive.
HLA-G has been identified as a natural tolerance-inducing molecule mainly in pregnancy and is considered a non-classical HLA class I molecule; however, it shares some structural characteristics with classic HLA. HLA-G genes are characterized by having a limited polymorphism and a cellular and tissue distribution restricted to the fetal trophoblast and thymic epithelial cells, among others. The persistent search for tolerance in organ transplants has allowed a specific study of HLA-G, as a therapeutic possibility to increase grafts and transplant patient’s survival; for this reason we carried out review of this molecule to stimulate research and understanding of its functions.
References
2) Hviid TV. HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Hum Reprod Update. 2006;12(3):209-32. doi: 10.1093/humupd/dmi048.
3) Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 8th ed. Philadelphia, PA: Elsevier/Saunders, 2015. 535 p.
4) Moreau P, Flajollet S, Carosella ED. Non-classical transcriptional regulation of HLA-G: an update. J Cell Mol Med. 2009;13(9B):2973-89. doi: 10.1111/j.1582-4934.2009.00800.x.
5) Mouillot G, Marcou C, Zidi I, Guillard C, Sangrouber D, Carosella ED, et al. Hypoxia modulates HLA-G gene expression in tumor cells. Hum Immunol. 2007;68(4):277-85. doi: 10.1016/j.humimm.2006.10.016.
6) Yang JS, Li BJ, Lu HW, Chen Y, Lu C, Zhu RX, et al. Serum miR-152, miR-148a, miR-148b, and miR-21 as novel biomarkers in non-small cell lung cancer screening. Tumour Biol. 2015;36(4):3035-42. doi: 10.1007/s13277-014-2938-1.
7) Castelli EC, Ramalho J, Porto IO, Lima TH, Felício LP, Sabbagh A, et al. Insights into HLA-G genetics provided by worldwide haplotype diversity. Front Immunol. 2014;5:476. doi: 10.3389/fimmu.2014.00476.
8) Jassem RM, Shani WS, Loisel DA, Sharief M, Billstrand C, Ober C. HLA-G polymorphisms and soluble HLA-G protein levels in women with recurrent pregnancy loss from Basrah province in Iraq. Hum Immunol. 2012;73(8):811-7. doi: 10.1016/j.humimm.2012.05.009.
9) Donadi EA, Castelli EC, Arnaiz-Villena A, Roger M, Rey D, Moreau P. Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell Mol Life Sci. 2011;68(3):369-95. doi: 10.1007/s00018-010-0580-7.
10) Castro MJ, Morales P, Martínez-Laso J, Allende L, Rojo-Amigo R, González-Hevilla M, et al. Evolution of MHC-G in humans and primates based on three new 3'UT polymorphisms. Hum Immunol. 2000;61(11):1157-63. doi: 10.1016/s0198-8859(00)00188-9.
11) Le Page ME, Goodridge JP, John E, Christiansen FT, Witt CS. Killer Ig-like receptor 2DL4 does not mediate NK cell IFN-γ responses to soluble HLA-G preparations. J Immunol. 2014;192(2):732-40. doi: 10.4049/jimmunol.1301748.
12) Bahri R, Hirsch F, Josse A, Rouas-Freiss N, Bidere N, Vasquez A, et al. Soluble HLA-G inhibits cell cycle progression in human alloreactive T lymphocytes. J Immunol. 2006;176(3):1331-9. doi: 10.4049/jimmunol.176.3.1331.
13) Naji A, Menier C, Morandi F, Agaugué S, Maki G, Ferretti E, et al. Binding of HLA-G to ITIM-bearing Ig-like transcript 2 receptor suppresses B cell responses. J Immunol. 2014;192(4):1536-46. doi: 10.4049/jimmunol.1300438.
14) Apps R, Gardner L, Sharkey AM, Holmes N, Moffett A. A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur J Immunol. 2007;37(7):1924-37. doi: 10.1002/eji.200737089.
15) Liang S, Baibakov B, Horuzsko A. HLA-G inhibits the functions of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur J Immunol. 2002;32(9):2418-26. doi: 10.1002/1521-4141(200209)32:9<2418::AID-IMMU2418>3.0.CO;2-L.
16) LeMaoult J, Krawice-Radanne I, Dausset J, Carosella ED. HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc Natl Acad Sci U S A. 2004;101(18):7064-9. doi: 10.1073/pnas.0401922101.
17) Le Rond S, Azéma C, Krawice-Radanne I, Durrbach A, Guettier C, Carosella ED, et al. Evidence to support the role of HLA-G5 in allograft acceptance through induction of immunosuppressive/regulatory T cells. J Immunol. 2006;176(5):3266-76. doi: 10.4049/jimmunol.176.5.3266.
18) Amodio G, Comi M, Tomasoni D, Gianolini ME, Rizzo R, LeMaoult J, et al. HLA-G expression levels influence the tolerogenic activity of human DC-10. Haematologica. 2015;100(4):548-57. doi: 10.3324/haematol.2014.113803.
19) Brown R, Kabani K, Favaloro J, Yang S, Ho PJ, Gibson J, et al. CD86+ or HLA-G+ can be transferred via trogocytosis from myeloma cells to T cells and are associated with poor prognosis. Blood. 2012;120(10):2055-63. doi: 10.1182/blood-2012-03-416792.
20) Lila N, Carpentier A, Amrein C, Khalil-Daher I, Dausset J, Carosella ED. Implication of HLA-G molecule in heart-graft acceptance. Lancet. 2000;355(9221):2138. doi: 10.1016/S0140-6736(00)02386-2.
21) Bahri R, Naji A, Menier C, Charpentier B, Carosella ED, Rouas-Freiss N, et al. Dendritic cells secrete the immunosuppressive HLA-G molecule upon CTLA4-Ig treatment: implication in human renal transplant acceptance. J Immunol. 2009;183(11):7054-62. doi: 10.4049/jimmunol.0803054.
22) Sheshgiri R, Gustafsson F, Sheedy J, Rao V, Ross HJ, Delgado DH. Everolimus but not mycophenolate mofetil therapy is associated with soluble HLA-G expression in heart transplant patients. J Heart Lung Transplant. 2009;28(11):1193-7. doi: 10.1016/j.healun.2009.07.009.
23) Misra MK, Pandey SK, Kapoor R, Sharma RK, Kapoor R, Prakash S, et al. HLA-G gene expression influenced at allelic level in association with end stage renal disease and acute allograft rejection. Hum Immunol. 2014;75(8):833-9. doi: 10.1016/j.humimm.2014.06.005.
24) Rebmann V, da Silva Nardi F, Wagner B, Horn PA. HLA-G as a tolerogenic molecule in transplantation and pregnancy. J Immunol Res. 2014;2014:297073. doi: 10.1155/2014/297073.
25) Capittini C, Bergamaschi P, Sachetto S, Truglio M, Viola M, Marchesi A, et al. The plasma levels of soluble HLA-G molecules correlate directly with CD34+ cell concentration and HLA-G 14bp insertion/insertion polymorphism in cord blood donors. Blood Transfus. 2014;12(Suppl 1):s361-6. doi: 10.2450/2012.0144-12.
26) Jacqueline Macedo Pereira J. Molécula HLA-G y su importancia en la inmunorregulación de la unidad feto-materna: aplicaciones en inmunoterapia celular [Tesis]. Universidad Complutense de Madrid, 2015. Disponible en:
27) Cervera I, Herraiz MA, Peñaloza J, Barbolla ML, Jurado ML, Macedo J, et al. Human leukocyte antigen-G allele polymorphisms have evolved following three different evolutionary lineages based on intron sequences. Hum Immunol. 2010;71(11):1109-15. doi: 10.1016/j.humimm.2010.07.003.
28)Rincón V, Manrique E. HLA-G: Su importancia inmunológica. Nova; 2006:4(5):91-9. doi: 10.22490/24629448.352.
29) Le Gal FA, Riteau B, Sedlik C, Khalil-Daher I, Menier C, Dausset J, et al. HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol. 1999;11(8):1351-6. doi: 10.1093/intimm/11.8.1351.
30)LeMaoult J, Daouya M, Wu J, Loustau M, Horuzsko A, Carosella ED. Synthetic HLA-G proteins for therapeutic use in transplantation. FASEB J. 2013;27(9):3643-51. doi: 10.1096/fj.13-228247.
31) Rouas-Freiss N, LeMaoult J, Moreau P, Dausset J, Carosella ED. HLA-G in transplantation: a relevant molecule for inhibition of graft rejection? Am J Transplant. 2003;3(1):11-6. doi: 10.1034/j.1600-6143.2003.30103.x.
32) Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: at the interface of maternal-fetal tolerance. Trends Immunol. 2017;38(4):272-86. doi: 10.1016/j.it.2017.01.009.
33) Ajith A, Portik-Dobos V, Horuzsko DD, Kapoor R, Mulloy LL, et al. HLA-G and humanized mouse models as a novel therapeutic approach in transplantation. Hum Immunol. 2020;81(4):178-85. doi: 10.1016/j.humimm.2020.02.006.
34) Baştürk B, Karakayali F, Emiroğlu R, Sözer O, Haberal A, Bal D, et al. Human leukocyte antigen-G, a new parameter in the follow-up of liver transplantation. Transplant Proc. 2006;38(2):571-4. doi: 10.1016/j.transproceed.2005.12.108.
35) Ezeakile M, Portik-Dobos V, Wu J, Horuzsko DD, Kapoor R, Jagadeesan M, et al. HLA-G dimers in the prolongation of kidney allograft survival. J Immunol Res. 2014;2014:153981. doi: 10.1155/2014/153981.
36) Shrestha B, Haylor J, Raftery A. Historical perspectives in kidney transplantation: an updated review. Prog Transplant. 2015;25(1):64-9, 76. doi: 10.7182/pit2015789.
37) Sass DA, Doyle AM. Liver and kidney transplantation: a half-century historical perspective. Med Clin North Am. 2016;100(3):435-48. doi: 10.1016/j.mcna.2015.12.001.
38) Becker LE, Süsal C, Morath C. Kidney transplantation across HLA and ABO antibody barriers. Curr Opin Organ Transplant. 2013;18(4):445-54. doi: 10.1097/MOT.0b013e3283636c20.
39) Billingham R, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172(4379):603-6. doi: 10.1038/172603a0.
40) Thorsby E. A short history of HLA. Tissue Antigens. 2009;74(2):101-16. doi: 10.1111/j.1399-0039.2009.01291.x.
41) Kissmeyer-Nielsen F, Olsen S, Petersen VP, Fjeldborg O. Hyperacute rejection of kidney allografts, associated with pre-existing humoral antibodies against donor cells. Lancet. 1966;2(7465):662-5. doi: 10.1016/s0140-6736(66)92829-7.
42) Lafferty KJ, Cunningham AJ. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci. 1975;53(1):27-42. doi: 10.1038/icb.1975.3.
43) Zinkernagel RM, Doherty PC. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature. 1974;251(5475):547-8. doi: 10.1038/251547a0.
44) Rowntree LC, Nguyen TH, Gras S, Kotsimbos TC, Mifsud NA. Deciphering the clinical relevance of allo-human leukocyte antigen cross-reactivity in mediating alloimmunity following transplantation. Curr Opin Organ Transplant. 2016;21(1):29-39. doi: 10.1097/MOT.0000000000000264.
45) Adams AB, Williams MA, Jones TR, Shirasugi N, Durham MM, Kaech SM, et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest. 2003;111(12):1887-95. doi: 10.1172/JCI17477.
46) Arnaiz-Villena A, Juarez I, Suarez-Trujillo F, López-Nares A, Vaquero C, Palacio-Gruber J, et al. HLA-G: function, polymorphisms and pathology. Int J Immunogenet. 2021;48(2):172-192. doi: 10.1111/iji.12513.
47) Pirri A, Contieri FC, Benvenutti R, Bicalho Mda G. A study of HLA-G polymorphism and linkage disequilibrium in renal transplant patients and their donors. Transpl Immunol. 2009;20(3):143-9. doi: 10.1016/j.trim.2008.09.012.
48) Durmanova V, Bandzuchova H, Zilinska Z, Tirpakova J, Kuba D, Buc M, et al. Association of HLA-G polymorphisms in the 3'UTR region and soluble HLA-G with kidney graft outcome. Immunol Invest. 2019;48(6):644-58. doi: 10.1080/08820139.2019.1610888.
49) Janssen M, Thaiss F, Nashan B, Koch M, Thude H. Donor derived HLA-G polymorphisms have a significant impact on acute rejection in kidney transplantation. Hum Immunol. 2019;80(3):176-83. doi: 10.1016/j.humimm.2018.12.011.
Copyright (c) 2022 Revista de Nefrología, Diálisis y Trasplante
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.