Los efectos del suplemento de aminoácidos de cadena ramificada en el tejido renal de ratas en ejercicio

  • Cemre Aydeğer Çanakkale Onsekiz Mart University Hospital, Çanakkale, Turkey
  • Hüseyin Avni Eroğlu Medicine School Department of Physiology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
Palabras clave: ejercicio de resistencia, daño renal, caspasa 3, aminoácidos de cadena ramificada, KIM-1

Resumen

Introducción: Uno de los suplementos utilizados en los programas de ejercicio son los aminoácidos de cadena ramificada (BCAA), los cuales son preferidos por su efecto en la regeneración de la síntesis de proteínas musculares. Sin embargo, debido a sus propiedades, los BCAA aumentan su cantidad en la sangre en poco tiempo. En este caso, el resultado puede aumentar la carga de trabajo de los riñones. Con base en la información, este estudio investigó los efectos del ejercicio de resistencia y los suplementos de BCAA en el tejido renal. Material y métodos: Un total de 24 ratas macho Wistar Albino se dividieron por igual en 4 grupos: Control, BCAA, Ejercicio y Ejercicio + BCAA. En el estudio de seis semanas, se aplicó ejercicio de natación de resistencia a los grupos de ejercicio. La suplementación con BCAA se administró a grupos de BCAA en dosis de 2,5 mg/kg antes del ejercicio. Al final del estudio, se realizaron análisis histológicos, inmunoquímicos y RT-PCR. Resultados: Como resultado de los hallazgos se encontró que el uso de suplementos de BCAA junto con el ejercicio provocó necrosis tubular (p=0.002). Hubo un aumento significativo en los hallazgos de tinción IHC de caspasa 3 en los grupos BCAA y Ejercicio + BCAA en comparación con el grupo de control (p=0,011; p=0,02). Además, los niveles de expresión de KIM-1 fueron más altos en el grupo de ejercicio que en todos los demás grupos (p = 0,004; p = 0,003; p = 0,008). Conclusión: Como resultado, el consumo de BCAA con ejercicio de resistencia causó daño al tejido renal.

Citas

1) Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):1143-211. doi: 10.1002/cphy.c110025.

2) Ardıç F. Exercise prescription. Turk J Phys Med Rehab. 2014;60 (Suppl. 2):S1-S8. doi: 10.5152/tftrd.2014.25665.

3) Daenen L, Varkey E, Kellmann M, Nijs J. Exercise, not to exercise, or how to exercise in patients with chronic pain? Applying science to practice. Clin J Pain. 2015;31(2):108-14. doi: 10.1097/AJP.0000000000000099.

4) Idorn M, Thor Straten P. Exercise and cancer: from "healthy" to "therapeutic"? Cancer Immunol Immunother. 2017;66(5):667-71. doi: 10.1007/s00262-017-1985-z.

5) Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr. 2018;15(1):38. doi: 10.1186/s12970-018-0242-y.

6) Bifari F, Nisoli E. Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. Br J Pharmacol. 2017;174(11):1366-77. doi: 10.1111/bph.13624.

7) Goron A, Moinard C. Amino acids and sport: a true love story? Amino Acids. 2018;50(8):969-80. doi: 10.1007/s00726-018-2591-x.

8) Pitkänen HT, Oja SS, Rusko H, Nummela A, Komi PV, Saransaari P, et al. Leucine supplementation does not enhance acute strength or running performance but affects serum amino acid concentration. Amino Acids. 2003;25(1):85-94. doi: 10.1007/s00726-002-0343-3.

9) Wolfe RR. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? J Int Soc Sports Nutr. 2017;14(1):1-7. doi: 10.1186/s12970-017-0184.

10) Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab (Lond). 2018;15:33. doi: 10.1186/s12986-018-0271-1.

11) Priante G, Gianesello L, Ceol M, Del Prete D, Anglani F. Cell death in the kidney. Int J Mol Sci. 2019;20(14):3598. doi: 10.3390/ijms20143598.

12) Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273(7):4135-42. doi: 10.1074/jbc.273.7.4135.

13) van Timmeren MM, van den Heuvel MC, Bailly V, Bakker SJ, van Goor H, Stegeman CA. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol. 2007;212(2):209-17. doi: 10.1002/path.2175.

14) Lu M, Zhang X, Zheng D, Jiang X, Chen Q. Branched-chain amino acids supplementation protects streptozotocin-induced insulin secretion and the correlated mechanism. Biofactors. 2015;41(2):127-33. doi: 10.1002/biof.1188.

15) Vieira R, Haebisch H, Kokubun E, Hell NS, Curi R. Sistema de natação para exercício físico de ratos. Arq Biol Tecnol. 1988;31(3):387-94.

16) Campos-Ferraz PL, Bozza T, Nicastro H, Lancha AH Jr. Distinct effects of leucine or a mixture of the branched-chain amino acids (leucine, isoleucine, and valine) supplementation on resistance to fatigue, and muscle and liver-glycogen degradation, in trained rats. Nutrition. 2013;29(11-12):1388-94. doi: 10.1016/j.nut.2013.05.003.

17) Büyük B, Demirci T, Adalı Y, Eroğlu HA. ¿Puede el líquido amniótico ser una solución alternativa de conservación de órganos para el almacenamiento renal en frío? Rev Nefrol Diál Traspl. 2020;40(1):14-24.

18) Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Mahamadu A, Dortbudak MB. Therapeutic efficacy of zingerone against vancomycin-induced oxidative stress, inflammation, apoptosis, and aquaporin 1 permeability in rat kidney. Biomed Pharmacother. 2018;105:981-91. doi: 10.1016/j.biopha.2018.06.048.

19) Doğanlar ZB, Uzun M, Ovali MA, Dogan A, Ongoren G, Doğanlar O. Melatonin attenuates caspase-dependent apoptosis in the thoracic aorta by regulating element balance and oxidative stress in pinealectomised rats. Appl Physiol Nutr Metab. 2019;44(2):153-63. doi: 10.1139/apnm-2018-0205.

20) Lin X, Jiang C, Luo Z, Qu S. Protective effect of erythropoietin on renal injury induced in rats by four weeks of exhaustive exercise. BMC Nephrol. 2013;14:130. doi: 10.1186/1471-2369-14-130.

21) Spada TC, Silva JMRD, Francisco LS, Marçal LJ, Antonangelo L, Zanetta DMT, et al. High intensity resistance training causes muscle damage and increases biomarkers of acute kidney injury in healthy individuals. PLoS One. 2018;13(11):e0205791. doi: 10.1371/journal.pone.0205791.

22) Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012:960363. doi: 10.1155/2012/960363.

23) Sorichter S, Mair J, Koller A, Calzolari C, Huonker M, Pau B, et al. Release of muscle proteins after downhill running in male and female subjects. Scand J Med Sci Sports. 2001;11(1):28-32. doi: 10.1034/j.1600-0838.2001.011001028.x.

24) Tsatalas T, Giakas G, Spyropoulos G, Sideris V, Lazaridis S, Kotzamanidis C, et al. The effects of eccentric exercise-induced muscle damage on running kinematics at different speeds. J Sports Sci. 2013;31(3):288-98. doi: 10.1080/02640414.2012.729135.

25) Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al.; Nomenclature Committee on Cell Death 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16(1):3-11. doi: 10.1038/cdd.2008.150.

26) Mooren FC, Krüger K. Exercise, autophagy, and apoptosis. Prog Mol Biol Transl Sci. 2015;135:407-22. doi: 10.1016/bs.pmbts.2015.07.023.

27) Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004;558(Pt 1):5-30. doi: 10.1113/jphysiol.2003.058701.

28) Lindinger MI. Potassium regulation during exercise and recovery in humans: implications for skeletal and cardiac muscle. J Mol Cell Cardiol. 1995;27(4):1011-22. doi: 10.1016/0022-2828(95)90070-5.

29) Thomson MN, Schneider W, Mutig K, Ellison DH, Kettritz R, Bachmann S. Patients with hypokalemia develop WNK bodies in the distal convoluted tubule of the kidney. Am J Physiol Renal Physiol. 2019;316(2):F292-F300. doi: 10.1152/ajprenal.00464.2018.

30) Jiao C, Chen W, Tan X, Liang H, Li J, Yun H, et al. Ganoderma lucidum spore oil induces apoptosis of breast cancer cells in vitro and in vivo by activating caspase-3 and caspase-9. J Ethnopharmacol. 2020;247:112256. doi: 10.1016/j.jep.2019.112256.

31) Bildik A, Bayar İ. Kanserde Apoptotik Yolakların İnhibisyonu. Turkiye Klinikleri J Vet Sci. 2018;9(2):42-51. doi: 10.5336/vetsci.2018-62141.

32) Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16(6):2129-44. doi: 10.7314/apjcp.2015.16.6.2129.

33) Viana LR, Tobar N, Busanello ENB, Marques AC, de Oliveira AG, Lima TI, et al. Leucine-Rich diet induces a shift in tumour metabolism from glycolytic towards oxidative phosphorylation, reducing glucose consumption and metastasis in walker-256 tumour-bearing rats. Sci Rep. 2019;9:15529. doi: 10.1038/s41598-019-52112-w.

34) Rautureau GJ, Day CL, Hinds MG. Intrinsically disordered proteins in bcl-2 regulated apoptosis. Int J Mol Sci. 2010;11(4):1808-24. doi: 10.3390/ijms11041808.

35) Yin W, Kumar T, Lai Z, Zeng X, Kanaan HD, Li W, et al. Kidney injury molecule-1, a sensitive and specific marker for identifying acute proximal tubular injury, can be used to predict renal functional recovery in native renal biopsies. Int Urol Nephrol. 2019;51(12):2255-65. doi: 10.1007/s11255-019-02311-1.
Publicado
2022-06-15
Cómo citar
1.
Aydeğer C, Eroğlu H. Los efectos del suplemento de aminoácidos de cadena ramificada en el tejido renal de ratas en ejercicio. Rev Nefrol Dial Traspl. [Internet]. 15 de junio de 2022 [citado 19 de abril de 2024];42(2):124-33. Disponible en: http://vps-1689312-x.dattaweb.com/index.php/rndt/article/view/790
Sección
Artículo Original